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Abstract. We analyse Baxter’s famousT − Q equations for theXXX (XXZ) spin chain and
show that, apart from its usual polynomial (trigonometric) solution, which provides the solution of
Bethe ansatz equations, there also exists a second solution which should correspond to the Bethe
ansatz beyondN/2. This second solution of Baxter’s equation plays an essential role and together
with the first one gives rise to all fusion relations.

1. Associated solutions of Bethe ansatz equations forXXX-spin chains

The equations of the Bethe ansatz in the case of theXXX-spin-12 chain [1] can be written in
the following form (see, e.g., [2]):(
λj + i/2

λj − i/2

)N
=

n∏
k 6=j

λj − λk + i

λj − λk − i
= −

n∏
k=1

λj − λk + i

λj − λk − i
(j = 1, 2, . . . , n) (1)

whereN is the length of the chain (total number of spins) andn is the number of parameters
λj , which describe the state vector.

The total spin of the eigenstate, described byλj , is equal toN/2 − n, therefore only
states withn 6 N/2 are meaningful. One can prove, for example, within the framework of the
quantum inverse scattering method (QISM) (see, e.g., [3]), that, ifn > N/2, the corresponding
Bethe vector vanishes.

Nevertheless, the solutions of (1) withn beyond the equatorN/2 do exist and, moreover,
their consideration appears to be very useful.

In this section we shall prove the following.

Theorem 1 (Extended Bethe ansatz for theXXX spin chain). For each solution of (1)
withn 6 N/2 there exists the associated one-parametric solution withn∗ = N−n+1> N/2.

Proof.

• Let us consider the set{λj }, which is the solution of (1), withn 6 N/2. This set defines
the polynomialQ(λ)†, whose roots are{λj }:

Q(λ) =
n∏
j=1

(λ− λj ). (2)

† In the more general situation of an inhomogeneousXXZ spin chain this polynomial was introduced by Baxter [4].
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Equations (1) could be represented in the following form:

(λj − i/2)NQ(λj + i) + (λj + i/2)NQ(λj − i) = 0 (j = 1, 2, . . . , n) (3)

from which it follows that the polynomial of degreeN + n

(λ− i/2)NQ(λ + i) + (λ + i/2)NQ(λ− i) (4)

vanishes at the roots of the polynomialQ(λ). For the case of the simple roots this statement
implies the validity of the Baxter equation forXXX spin chain [5, 6]:

(λ− i/2)NQ(λ + i) + (λ + i/2)NQ(λ− i) = T (λ)Q(λ) (5)

where the polynomialT (λ) of degreeN , is an eigenvalue of the transfer matrix (the trace
of the monodromy matrix) for theXXX model.
• Let us divide both sides of (5) on the productQ(λ− i)Q(λ)Q(λ + i)

T (λ)

Q(λ + i)Q(λ− i)
= R(λ− i/2) +R(λ + i/2) (6)

where

R(λ) = λN

Q(λ− i/2)Q(λ + i/2)
. (7)

The rational functionR(λ) can be presented in the following form:

R(λ) = π(λ) +
q−(λ)

Q(λ− i/2)
+

q+(λ)

Q(λ + i/2)
(8)

whereπ(λ), q−(λ) andq+(λ) are polynomials, whose degrees satisfy

degπ(λ) = N − 2n

degq−(λ) < n (9)

degq+(λ) < n.

These inequalities will be used in the following.
Making use of the representation (8) forR(λ) let us rewrite equation (6),

T (λ)

Q(λ + i)Q(λ− i)
= π(λ− i/2) + π(λ + i/2)

+
q−(λ− i/2)

Q(λ− i)
+
q+(λ− i/2)

Q(λ)
+
q−(λ + i/2)

Q(λ)
+
q+(λ + i/2)

Q(λ + i)
. (10)

In the right-hand side of (10) there are two terms with the denominatorQ(λ):
q+(λ− i/2) + q−(λ + i/2)

Q(λ)

which are absent in the left-hand side. The degree of the nominator of this fraction
according to (9) is less than the degree of the denominator, therefore the two terms should
cancel each other, hence

q+(λ) = q(λ + i/2) q− = −q(λ− i/2). (11)

• With (11) the representation forR(λ) becomes

R(λ) = π(λ) +
q(λ + i/2)

Q(λ + i/2)
− q(λ− i/2)

Q(λ− i/2)
. (12)

The polynomialπ(λ), as any other, may also be presented as the finite difference

π(λ) = ρ(λ + i/2)− ρ(λ− i/2) (13)

whereρ(λ) is a polynomial of degreeN − 2n + 1. The explicit form ofρ(λ) one can
obtain, for example, via binomial polynomials

(
λ

m

)
, m = 0, 1, 2, . . . .
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• Taking into account (13) we arrive at the following equation for our rational functionR(λ):

R(λ) ≡ λN

Q(λ + i/2)Q(λ− i/2)
= P(λ + i/2)

Q(λ + i/2)
− P(λ− i/2)

Q(λ− i/2)
(14)

whereP(λ) is the last and most important polynomial of this theorem:

P(λ) = ρ(λ)Q(λ) + q(λ). (15)

Counting the degree ofP(λ) we obtain degP(λ) = n∗ = N + 1− n.
• Now we can get rid of the denominators in (14), and obtain the fundamental equation

P(λ + i/2)Q(λ− i/2)− P(λ− i/2)Q(λ + i/2) = λN. (16)

• This equation is invariant under the substitutionQ → −P , therefore the roots of the
polynomialP(λ), which we denote as{λ∗j } provide the solution of Bethe ansatz equations:(

λ∗j + i/2

λ∗j − i/2

)N
=

n∗∏
k 6=j

λ∗j − λ∗k + i

λ∗j − λ∗k − i
(j = 1, 2, . . . , n∗) (17)

as the roots ofQ(λ) provide the solution of (1).
• The polynomialρ(λ) in (13) is defined up to the arbitrary constantα. This implies that

the polynomialP(λ), corresponding toQ(λ) is actually the one-parametric family

P(λ, α) = P(λ) + αQ(λ) (18)

with obvious agreement with (16). �

The theorem we have just proven may be illustrated by the concrete example of the set of
polynomialsP andQ for the caseN = 4.

Table 1.

Number S Q(λ) (2S + 1) iP (λ) T (λ)

1 0 λ2 + 1
4 λ3 + 5

4λ + α(λ2 + 1
4) 2λ4 + 3λ2 − 3

8

2 0 λ2 − 1
12 λ3 + 1

4λ + α(λ2 − 1
12) 2λ4 + 3λ2 + 13

8

3 1 λ− 1
2 λ4 + λ3 + λ2 + 5

8λ + α(λ− 1
2) 2λ4 + λ2 + 2λ + 1

8

4 1 λ + 1
2 λ4 − λ3 + λ2 − 5

8λ + α(λ + 1
2) 2λ4 + λ2 − 2λ + 1

8

5 1 λ λ4 − 1
2λ

2 − 3
16 + αλ 2λ4 + λ2 − 7

8

6 2 1 λ5 + 5
6λ

3 + 7
48λ + α 2λ4 − 3λ2 + 1

8

A few comments are in order.

• The polynomialQ(λ) is normalized in such a way that the coefficient at the highest degree
is equal to 1. Comparing the highest degrees in (16), we obtain that the coefficient at the
highest degree ofP(λ) is equal to 1/i(N − 2n + 1) = 1/i(2S + 1), whereS is the spin of
Bethe state.
• Note that the existence of a one-parametric solution of Bethe equations ‘beyond the

equator’ implies that these equations are not independent. We shall consider the
consequences of this fact in a separate paper.
• Let us return to equation (6). Using the representation (14) forR(λ), we obtain the

following expression for eigenvalues of the transfer matrix:

T (λ) = P(λ + i)Q(λ− i)− P(λ− i)Q(λ + i). (19)
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• Combining (16) and (19) we easily obtain the equation:

(λ− i/2)NP (λ + i) + (λ + i/2)NP (λ− i) = T (λ)P (λ) (20)

similar to the Baxter equation (5).
This means thatP(λ) may be considered as the second independent solution of (5). The
arbitrary linear combination ofQ andP is the solution of the Baxter equation as well.
• Finally, note that the polynomialsQ(λ), P (λ), satisfying the relation (16) are similar to

the eigenvalues of operatorsQ±, which have been constructed in the series of papers by
Bazhanovet al [7]. In these papers authors considered the field theory analogues of some
useful constructions of lattice integrable models. The extension of theirQ± operators for
the six-vertex model† requires an external magnetic field. Unfortunately at the present
stage we do not know whether there exists a direct relation of their operators with our
P −Q polynomials. The general construction of Krichiveret al [9] also uses a special
parameterν which plays the role of the magnetic field.

2. Fusion relations for transfer matrices

As was emphasized in [7, 9], the fundamental equation

P(λ + i/2)Q(λ− i/2)− P(λ− i/2)Q(λ + i/2) = λN (21)

implies the existence of the class of functional relations known as fusion relations for transfer
matrices (see, e.g., [10]).

Now we have shown that the fundamental relation (21) follows from the Bethe ansatz
equations, therefore these fusion relations also arise due to the Bethe ansatz.

Let us consider the details of the connection of (21) and fusion relations.
First of all let us define the functionsTs(λ) as follows:

Ts(λ) = P
(
λ + i

(
s + 1

2

))
Q(λ− i

(
s + 1

2

))− P (λ− i
(
s + 1

2

))
Q
(
λ + i

(
s + 1

2

))
. (22)

The parameters may be considered as spin in the auxiliary space and therefore may take
integer or half-integer values, but generally speaking the right-hand side in (22) is well defined
for arbitrary complexs.

From this definition immediately follows the equation

T−s−1(λ) = −Ts(λ) (23)

and, for particular values ofs, we have

T1/2(λ) = T (λ) T−1/2(λ) = 0 T−1(λ) = −T0(λ) = −λN. (24)

For the sake of brevity we shall use the following notation:

1(a, b) ≡ P(a)Q(b)− P(b)Q(a). (25)

The function1(a, b) changes sign whilea→ b, which implies the identity

1(a, b)Q(c) +1(b, c)Q(a) +1(c, a)Q(b) = 0. (26)

Making use of definitions (22) and (25) we can rewrite the last equation as follows:

Ts1(λ + i(s2 − s3)/3)Q(λ + 2i(s3− s2)/3) + Ts2(λ + i(s3− s1)/3)Q(λ + 2i(s1− s3)/3)
+Ts3(λ + i(s1− s2)/3)Q(λ + 2i(s2 − s1)/3) = 0 (27)

s1 + s2 + s3 + 3
2 = 0.

Apparently this equation may be considered as a generalization of theT −Q equation (5).

† See also [8].
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Another simple identity

1(a, b)1(c, d)−1(a, c)1(b, d) +1(a, d)1(b, c) = 0 (28)

leads to the following quadratic relations:

Ts1
(
λ− i

(
s1 + 1

2

))
Ts3−s2−1/2(λ− i(s2 + s3 + 1))

−Ts2
(
λ− i

(
s2 + 1

2

))
Ts3−s1−1/2(λ− i(s1 + s3 + 1))

+Ts3
(
λ− i

(
s3 + 1

2

))
Ts2−s1−1/2(λ− i(s1 + s2 + 1)) = 0. (29)

For s2 = −1, s3 = 0, the last equation due to (23) and (24) may be written as the famous
fusion relations:

Ts
(
λ− i

(
s + 1

2

))
T (λ) = (λ + i/2)NTs−1/2(λ− i(s + 1)) + (λ− i/2)NTs+1/2(λ− is) (30)

whereTs(λ) is the eigenvalue of transfer matrix of quantum spin1
2 and auxiliary spins.

3. XXXsq -model

Now let us consider the inverse situation where the quantum spin issq , while the auxiliary
spin is 1

2. This situation corresponds to theXXXsq spin chain. The above discussion could be
easily generalized for this case.

Indeed, the Bethe ansatz equations have the following form (see, e.g. [2]):(
λj + i sq
λj − i sq

)N
=

n∏
k 6=j

λj − λk + i

λj − λk − i
= −

n∏
k=1

λj − λk + i

λj − λk − i
(j = 1, 2, . . . , n) (31)

where the notation is the same as in (1).
Now the set of meaningful solutions{λj } are those forn 6 sq N . The eigenvalues of the

transfer matrix are given by

T1/2,sq (λ) = (λ + isq)
N

n∏
j=1

λ− λj − i

λ− λj + (λ− isq)
N

n∏
j=1

λ− λj + i

λ− λj (32)

while theT −Q Baxter equations look like

(λ− isq)
NQsq (λ + i) + (λ + isq)

NQsq (λ− i) = T 1
2 sq
(λ; sq)Qsq (λ). (33)

To simplify further considerations we shall limit ourselves to the casesq = 3
2.

As in the case ofsq = 1
2, we divide both sides of (33) by the productQ(λ−i)Q(λ)Q(λ+i).

However, in trying to represent the right-hand side as a finite difference, we meet an obstacle
due to the different shifts of the spectral parameters in the numerators and denominators of
the fractions. To overcome this difficulty we have to multiply both sides by the additional
multipliers(λ+ i/2)N(λ− i/2)N (in the general case the number of these auxiliary multipliers
is 2sq − 1):

T (λ)(λ + i/2)N(λ− i/2)N

Q(λ + i)Q(λ− i)
= R(λ− i/2) +R(λ + i/2) (34)

where

R(λ) = (λ− i)NλN(λ + i)N

Q(λ− i/2)Q(λ + i/2)
. (35)
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Table 2. The illustrative example for the casesq = 3
2 ,N = 2.

Number S Q(λ) (2S + 1) iP (λ) T (λ)

1 0 λ3 + 5
4λ λ4 + 5

2λ
2 + 9

16 + α(λ3 + 5
4λ) 2λ2 + 15

2

2 1 λ2 + 9
20 λ5 + 5

2λ
3 + 9

16λ + α(λ2 + 9
20) 2λ2 + 11

2

3 2 λ λ6 + 15
4 λ

4 + 59
16λ

2 + 45
64 + αλ 2λ2 + 3

2

4 3 1 λ7 + 91
20λ

5 + 91
16λ

3 + 369
320λ + α 2λ2 − 9

2

Further steps are the same as above and finally we arrive at the following fundamental
relation:

P3/2(λ + i/2)Q3/2(λ− i/2)− P3/2(λ− i/2)Q3/2(λ + i/2) = (λ− i)NλN(λ + i)N (36)

and expression for eigenvalues of transfer matrixT1/2 3/2(λ):

T1/2 3/2(λ)(λ + i/2)N(λ− i/2)N = P3/2(λ + i)Q3/2(λ− i)− P3/2(λ− i)Q3/2(λ + i). (37)

In conclusion of this section we formulate the second theorem, which generalizes the first
one.

Theorem 2. For each solution of equations (31) withn 6 sN , there exists a one-parametric
associated solution withn∗ = 2sN − n + 1> sN .

Note that with a fundamental relation of the type (36) for arbitrarysq we can obtain the
rational analogues of all fusion relations considered in [10].

4. Trigonometric case:XXZ spin chain

Here we shall consider the Bethe ansatz ‘beyond the equator’ for theXXZ spin chain. The
general ideas of this generalization are the same as in the first section.

We shall use Baxter’s parametrization (see, e.g., [6]) for spectralφ and crossingη
parameters. In this notation theT −Q Baxter equation looks like

T (φ)Q(φ) = sinN(φ + η)Q(φ − 2η) + sinN(φ − η)Q(φ + 2η). (38)

As usual, theq-parameter of theXXZ model is defined byq = e2iη.
Recall that

Q(φ) =
n∏
j=1

sin(φ − φj ) (39)

is now a trigonometric polynomial of degreen 6 N/2, where a set{φj } substitutes the set of
{λj } in (1), all other notation was introduced in the first section.

Eigenvalues of the transfer matrixT (φ) are also trigonometric polynomials of degreeN .
Instead of the rational functionR(λ) we now have the meromorphic function

R(φ) = sinN φ

Q(φ − η)Q(φ + η)
. (40)

The analogue of the decomposition on the primitive fractions in the trigonometric case
is the decomposition of (40) on to the primitive functions 1/ sin(φ − φj ± η) for oddN and
cot(φ − φj ± η) for evenN .
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Making use of this expansion, and taking into account the Bethe ansatz, we obtain the
trigonometric analogue of representation (12):

R(φ) = π(φ) +
q(φ + η)

Q(φ + η)
− q(φ − η)
Q(φ − η) (41)

whereπ(φ) is the trigonometric polynomial of degreeN − 2n, while degq(φ) < n.
Now the construction of theP(φ) which is the analogue ofP(λ) is reduced to the

construction of the trigonometric polynomialρ(φ) satisfying

ρ(φ + η)− ρ(φ − η) ≡ π(φ). (42)

In the present paper we shall consider the case where theq parameter is not the root of
unity, i.e.η is not the rational part ofπ .

In this case sin(kη) 6= 0, k ∈ Z and so we can use the following simple formulae:

sin(kφ) = cos(k(φ − η))− cos(k(φ + η))

2 sin(kη)

cos(kφ) = sin(k(φ + η))− sin(k(φ − η))
2 sin(kη)

.

(43)

For oddN , the degree ofπ(φ) is also odd and it may be decomposed into the harmonics
cos(kφ), sin(kφ) k 6= 0.

In this case equations (43) solve the problem (42) andρ(φ) is the trigonometric polynomial
of the degreeN − 2n. The polynomial

P(φ) ≡ ρ(φ)Q(φ) + q(φ) (44)

is the second solution of (38); its degree isN − n.
Apparently its decomposition

P(φ) = constant
n∗∏
j=1

sin(φ − φ∗j ) (45)

wheren∗ = N − n gives the solution for the trigonometric Bethe ansatz equation(
sin(φj + η)

sin(φj − η)
)N
=

n∗∏
k 6=j

sin(φj − φk + 2η)

sin(φj − φk − 2η)
(j = 1, 2, . . . , n∗) (46)

‘beyond the equator’.
For evenN , the polynomialπ(φ) has the zero harmonic and therefore the solution of (42)

acquires a term with a linear (nonperiodic) dependence onφ.
As the result we have the following.

Theorem 3 (the associated solution of the Baxter equation for aXXZ spin chain). For
each solution of equation (38) withn 6 N/2 there exists the associated solution, which
is a trigonometric polynomial of degreen∗ = N − n > N/2 in the case of odd lengthN .

For even length the associated solution has the form (44) whereρ(φ) contains the linear
(nonperiodic) dependence onφ.

For the construction of the fusion relation in the case of theXXZ model it is sufficient
to use two main ingredients—the analogues of equations (21) and (22). The first one can be
extracted from the representation forR(φ):

P(φ + η)Q(φ − η)− P(φ − η)Q(φ + η) = sinN φ. (47)

The second one may be written as follows:

Ts(φ) = P(φ + (2s + 1)η)Q(φ − (2s + 1)η)− P(φ − (2s + 1)η)Q(φ + (2s + 1)η). (48)

Therefore, all the results of sections 2 and 3 holds true for a genericXXZ spin chain.
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